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Abstract

Structure-from-motion is one of the most powerful tools for 3D reconstruction.
While many methods have been proposed to improve the quality of 3D reconstruc-
tions in terms of accuracy, robustness, completeness and e�ciency, there is still a
remaining problem of scale ambiguity in Structure-from-Motion. In this project,
we reconstruct the 3D structures of neighborhoods and aim to recover the met-
ric with prior knowledge of GPS data when recording the videos. We propose
a GPS-based localization method to improve the retrieval e�ciency and optimize
our reconstructions using Pose-Graph-Optimization. The project is available at
https://github.com/haoranchen1104/gps_based_localization.
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Symbols

Symbols

K intrinsic matrix

R rotation matrix

I identity matrix

T translation

c camera

w world frame

q pose (the homogeneous matrix 4⇥ 4)

p position

I image

G GPS data

N number n

v global feature

f local features

S score matrix

D summed distance in MSAC

� dot product

O observation

R reconstruction

card. function of cardinality

SG matching function of SuperGlue

T trajectory

r ratial

Indices

{X,Y, Z}w x, y, z axis in the world frame

{u, v}c pixel coordinate in the image plane

Acronyms and Abbreviations

SfM structure from motion

SIFT Scale-invariant feature transform

v



MSAC M-Estimate Sample Consensus

fps frame per second



Chapter 1

Introduction

Structure-from-Motion (SfM) is a popular photogrammetric tool to extract 3D in-
formation from 2D images, by estimating the motion of cameras corresponding to
these images. Such technique can be used to recover 3D structures from unordered
image collections [1, 2, 3, 4]. However, an inherent problem of scale ambiguity in
SfM results in the metric information loss of 3D structures. Current reconstruction
systems [5, 6, 7] follow a sequential pipeline to build 3D structures iteratively. A
pipeline in a reconstruction system usually consists of feature extraction and feature
matching, camera motion estimation, 3D structure reconstruction via optimization.
In this project, we integrate GPS information into the pipeline as prior knowledge
to recover the actual scale of 3D structures. With such information, we can also
accelerate the image retrieval process in feature matching. In addition, we optimize
the pose graph of photos from di↵erent sources in a large reconstruction scene.

1.1 Preliminaries of Structure-from-Motion

In this section, we firstly define SfM in math formulation and explain the issue of
scale ambiguity. Then we describe di↵erent components in the procedure of SfM
and introduce some of state-of-the-art learning-based methods.

1.1.1 Math Formulation of SfM

As shown in fig. 1.1, given a list paired points ({p1c1 , p
2
c1 , p

3
c1 , . . . }, {p

1
c2 , p

2
c2 , p

3
c2 , . . . })

from two images (c1, c2), SfM aims to calculate the transformation (R for rotation,
T for translation) between c1 and c2. In some problems, the intrinsics (K1,K2) are
also unknown, which need to be computed simultaneously.
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The math formulations are shown in eq. 1.1, eq. 1.2, while ui
⇤, v

i
⇤ are the pixel

coordinates in the image planes. Xi
w, Y

i
w, Z

i
w are the corresponding 3D points in

the world frame (in this case, the world frame is the same as the frame of c1).
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Figure 1.1: Illustration of SfM1. The 3D points are shown in red, and the blue
points are the corresponding projections on the image plane. SfM estimates the
camera poses of new images according to the 3D structure and augments the 3D
structure by triangulating new 3D points.

Fig. 1.2 shows that 3D structures of di↵erent scales share the same projections on
the image plane. In the process of SfM, scale is not obtained during the motion
of cameras, but the rotation and the direction of translation can be determined by
solving the math equations. Typical factorization-based methods, like eight-point
algorithm [8] and five-point algorithm [9], are normally used to calculate the poses
of cameras in the SfM problem.

1.1.2 Components of SfM

Feature extraction is the first step in SfM by detecting distinctive keypoints in
every image and building corresponding descriptors. These keypoints and descrip-
tors should be repeatable and invariant under certain geometric and photometric
changes, such as rotation, view-point change, illumination, etc. One of the standard
feature extraction algorithms is SIFT [10], which is mostly used in SfM due to its
robustness. Many derivatives of SIFT [11], such as SURF [12], ORB [13], etc, have
been developed to improve feature extraction in terms of quantity, accuracy and
e�ciency. Recently, learned features [14, 15, 16] have been proposed to improve the
extraction speed and robustness, and have been the gold standard in SfM.
Feature Matching locate the mutual scene across di↵erent images by calculating
the correlation between the features, as known as similarity metrics. Typical sim-
ilarity metrices include Normalized Cross Correlation, Sum of Squared Distance,
Sum of Absolute Distance and Census Transform. Di↵erent matching strategies are
used in di↵erent SfM systems in terms of computational complexity, accuracy and
robustness. A naive approach is to verify all image pairs to detect scene overlaps.
However, large volume of false image pairs take too much computation resources
and are time wasted. Thus, other strategies reduce the number of image pairs with
image retrieval scheme by comparing the global feature of images and only test-
ing image pairs that have similar global features. Vector of Locally Aggregated
Descriptors (VLAD) [17] is usually used as global feature.

1The picture is selected from the course slides of ”Vision Algorithms for Mobile Robotics” by
Prof. Dr. Davide Scaramuzza.
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Figure 1.2: Illustration of scale ambiguity. The image shows that the large box and
the small box share the same projection on the image plane. Thus, only with the
information from images, SfM cannot recover the metric of 3D structures.

Camera motion estimation mainly calculates a projective geometry between
images by estimating transformations which map the features from image pairs.
Camera motion is estimated by computing the essential matrix E (or the funda-
mental matrix F ) through epipolar geometry [18]. Normally, there are false matched
features which are called outliers and can largely influence the estimation result.
To alleviate the outlier-contamination, random sample consensus (RANSAC) [19]
is often required to verify the geometric relation between matched features, which
can improve the robustness of SfM especially in large scenes.
3D structure reconstruction can be recovered with the information of camera
motion by triangulating new scene points incrementally. The scene points are crucial
in SfM, as they are used to register new images and triangulate new scene points,
thus greatly a↵ect the quality the reconstruction result. Image registration and
triangulation are coupled, and inevitably cause errors even though using RANSAC
to ensure the local accuracy. Thus, the errors are propagated during the incre-
mental reconstruction and can lead to large drift till a meaningless unstable state.
Therefore, further refinement is introduced in most SfM systems for optimization.
Bundle Adjustment (BA) [20] and pose graph optimization (PGO) [21] are the two
most common tools, by minimizing the reprojection error and optimizing the pose
graph.

1.2 Large Scene Reconstruction

In this section, we firstly introduce existing methods for large scene reconstruction.
Then, we summarize the key steps.
Cohen et al. [22] merges visually disconnected SfM models by selecting connection
point pairs with a loop closure constraint. However, this method can only be
used in certain conditions and cannot be generalized to large scenes. Kühner and
Kümmerle [23] proposes a pipeline for volumetric reconstruction by utilizing LiDAR
sensors, which are commonly used in autonomous cars. Fang et al. [24] provides
a traditional way of merging di↵erent SfM models. The authors detect the image
pairs from multiple partial 3D reconstructions, and find the best transformation and
the relative scale factor. With the best transformation, the large reconstruction can
be built by combining camera poses and 3D point clouds.
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For visual-only systems, the key steps include retrieving image pairs from di↵erent
models, finding the relative transformation according the retrieved pairs, merging
and optimizing the models based on the interrelationships.



Chapter 2

Method

Our SfM method for large scene reconstructions is developed in Python using
learned-features. In this chapter, we firstly describe our method with an overview,
and then explain the details in di↵erent components.

2.1 Overview

The project is divided into two phases, data capturing and scene reconstruction.
In the first phase, all data are captured by GoPro7 1, which can store the GPS
information while recording videos. Therefore, we can utilize the GPS data to
recover the metric of reconstructions. As shown in fig. 2.1, we mounted 5 GoPros
on a helmet to capture all angles. Then, with this equipment, we recorded a whole
neighborhood through N 3-4 min trajectories, while every trajectory was captured
in 5 camera views and shared mutual scenes across other trajectories. Thus, the
neighborhood was fully recorded in 5N videos, which were then sampled at 5fps to
form a database of total 25N images.
In the second phase, we developed our method based on hloc [25]. As shown in
fig. 2.2, our method firstly builds partial models for all videos, then we merge
these models through the mutual scenes shared in di↵erent videos. Finally, we
optimize the large scene reconstruction using Pose Graph Optimization. Di↵erent
from hloc, our method recovers the metric of the whole scene, applies GPS data to
accelerate the process of image retrieval, and improves the localization robustness
by RANSAC.

2.2 Partial Reconstruction

In this section, we implement learning-based methods in [25] to reconstruct each in-
dividual trajectory for all camera views. This procedure includes feature extraction,
feature matching, camera motion estimation and 3D structure reconstruction.
For feature extraction, we use SuperPoint [16] to extract local features which are
generated from CNNs to provide a robust representation for matching in the later
steps. Other than tranditional hand-craft descriptors like SIFT, SuperPoint simul-
taneously computes key point locations and associated descriptors, and thus uses
less computational resources and time consumption.
For feature matching, we use SuperGlue [26] to assign features accurately by rea-
soning about the underlying 3D structure. The attention mechanism in SuperGlue

1
https://gopro.com/en/us/update/hero7-black

5
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Figure 2.1: Equipment of data capturing.

Figure 2.2: An overview of the method. There are mainly 3 steps to build a large
scene reconstruction from recorded videos. We use SfM to build partial reconstruc-
tion of each video. Then, we merge all partial reconstructions by image retrieval
and localization. We also utilize the GPS data to accelerate this step and make
it robust. Finally, we optimize all camera poses with PGO and visualize the 3D
structure.

can successfully disambiguate mismatches and is vital for robust matching [26].
Moreover, it can run in real time (70ms) on GPU for an image pair.
Before feature matching, we also have to find image pairs. A naive way is compare
all image pairs: for Ni images, there are Ni(Ni�1)

2 image pairs. In large scene
reconstruction, the number of images in each video is up to 3000, while the number
of all image pairs is around 4.5 million, which takes around 4 days. Thus, we use
NetVLAD [27] to only consider image pairs that have similar global features. In
our project, we extract 5 image pairs for every image, which only takes around half
an hour for matching.
For camera motion estimation and 3D structure reconstruction, we use tools in
Colmap [5] with its python bindings - pycolmap 2. The tools firstly verify the
geometric relations, then register new images for triangulation in the next step. At
last, colmap runs bundle adjustment to refine the 3D model.
Finally, we try to rescale the reconstruction model to the actual scale with the GPS
data we have. In this step, we firstly align the GPS data timestamp with every

2
https://github.com/colmap/pycolmap

https://github.com/colmap/pycolmap
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(a) Red dots: the recorded GPS data. Blue
line: the trajectory of the original model.
Blue dots: the corresponding positions in
the model.

(b) Red dots: the recorded GPS data. Blue
line: the trajectory of the original model.
Green line: the recovered trajectory after
GPS alignment.

Figure 2.3: An example of model alignment with GPS.

image. Then we apply the model aligner in colmap to recover the model metric.
Fig. 2.3 shows an example of how to align the reconstructed model with the GPS
data to recover its own metric.

2.3 Merging Partial Reconstructions

In this section, we aim to merge all partial reconstructions that share the same
scenes. There are mainly two steps for this part. Firstly, we randomly select two
models as the base model and the query model. Secondly, we extract possible image
pairs from the base and query models that have similar global features. Thirdly, we
try to localize the images in the pairs that are selected in the query model. Finally,
we utilize RANSAC to eliminate the outliers after localization.

2.3.1 GPS-based Image Retrieval

For two partial observations OA = {IA1 , IA2 , IA3 , . . . , IANA
},OB = {IB1 , IB2 , IB3 , . . . , IBNB

},
it is common that A,B only share a same segment of scene in their reconstructed
models. It’s not reasonable to naively extract all image pairs though the two images
are apparently taken in di↵erent locations.
Therefore, with the GPS information, we can determine whether an image pair
(IAi , I

B
j ) is valid or not based on their corresponding GPS data GA

i ,G
B
j . We assume

the image pair (IAi , I
B
j ) is invalid if kGA

i �GB
j k > 10m. For simplicity, we divide the

whole map into 12⇥12m2 grids, while the centers of these grids are only 10m away
from each other to have enough overlaps with neighboring grids. We only consider
image pairs that are located in the same grid. In this way, we can include most of
image pairs that are less then 10m away, and the whole image retrieval process can
be computed very quickly.
With the GPS-based image retrieval strategy, we can avoid many false image pairs
that do not share a same scene but have similar patterns in the image plane, like
walls, green grass, etc. In addition, the new strategy takes much less time. The
time consumption of the naive retrieval strategy is proportional to NANB , however,
the new strategy only depends on the number of images in one grid and the number
of grids. Therefore, the larger the partial reconstructions are, the more time the
GPS-based strategy can save.
Fig. 2.4 shows an example GPS database of images. We adapt our algorithm
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Figure 2.4: The database of GPS information for a single trajectory.

from hloc 3[25] to find valid image pairs between the query and the base model. We
directly use the global features of both models, i.e. VA = [vA1 , v

A
2 , v

A
3 , . . . , v

A
NA

], VB =
[vB1 , vB2 , vB3 , . . . , vBNB

], calculated using NetVLAD during partial reconstruction. We
compute the score matrix S as below eq. 2.1:

S =

2

6664

vA1 � vB1 vA1 � vB2 . . . vA1 � vBNB

vA2 � vB1 vA2 � vB2 . . . vA2 � vBNB

...
...

. . .
...

vANA
� vB1 vANA

� vB2 . . . vANA
� vBNB

3

7775
(2.1)

where � represents dot product, while Sij represents the similarity of vAi and vBj .
Then, we apply a GPS mask MGPS to ignore pairs that are not from a same grid.

SGPS = S ⌦MGPS (2.2)

where ⌦ represents Hadamard product, MGPS is the GPS mask, and I(⇤) represents
the indicator function.

MGPS =

2

6664

I(dth � d11) I(dth � d12) . . . I(dth � d1NB )
I(dth � d21) I(dth � d22) . . . I(dth � d2NB )

...
...

. . .
...

I(dth � dNA1) I(dth � dNA2) . . . I(dth � dNANB )

3

7775
(2.3)

I(x) =
(
1 if x >= 0

0 if x < 0
(2.4)

dij = kGA
i �GB

j k (2.5)

Finally, for every query descriptor in A, we select 5 pairs from SGPS that have the
highest scores if exist.

3
https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/pairs_from_

retrieval.py

https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/pairs_from_retrieval.py
https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/pairs_from_retrieval.py
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Figure 2.5: The illustration of our RANSAC algorithm. Left: green line - the
original trajectory of the query model; orange dots - the localized poses. Right: red
dots - inliers; blue dots - outliers; yellow arrow - the best transformation.

2.3.2 Robust Localization

To localize the query model in the frame of base model, we need not only the image
pairs but also the matches on the feature level. With the image pairs {(IAi , IBj )}i,j
retrieved from partial reconstructions RA,RB , we use SuperGlue to match the local
features,i.e. SuperPoint fA

i , fB
j , in (IAi , I

B
j ).

After computing the relations on the local level, we can estimate the poses of cam-
eras in A by solving the PnP problem with tools in colmap. However, it is inevitable
that there are many outliers of the localized poses. We design a RANSAC algorithm
to alleviate the outlier-contamination.

As shown in fig. 2.5, the RANSAC algorithm aims to model the best 1-point
correspondence transformation that would have the most inliers. The 1-point cor-
respondence transformation qiBA is calculated by one camera pose qAi in the query
model and its corresponding localized pose qLA

i as shown in e.q. 2.6.

qiBA = qLA
i qAi

�1
(2.6)

where LA represents the localization of camera pose cAi in B. After computing
the transformation, we evaluate all localized poses with a distance metric. If the
distance between the localized position with the transformed position is less than
a threshold, then we consider this localized pose is an inlier, otherwise an outlier.
However, it is hard to set the threshold for all reconstruction models, which largely
a↵ects the result. Therefore, we improve the metric function using MSAC [28] by
comparing the summed distance D to find the best transformation.

Di =
X

j

max
n
abs(qiBAp

A
j � pLA

j ), dth
o

(2.7)

Eq. 2.7 shows how to calculate the summed distance, where Di represents the
summed distance with the transformation qiBA , p the homogeneous coordinates
of camera positions, j represents the index of poses that are localized and dth
represents a relatively large distance threshold. In this way, the threshold a↵ects
less to the final result. To determine the inliers and outliers, we use a heuristic of
5.0m. If abs(q⇤BAp

A
j � pLA

j ) < 5.0m under the best transformation q⇤BA, we assume

the localized pose pLA
j is an inlier, otherwise an outlier.
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2.4 Pose Graph Optimization

After merging the partial reconstructions, we have many query-base localization
pairs. However, it’s hard to set the initial base model because we cannot know
a completely accurate reconstruction as our prior knowledge. Instead, we try to
obtain the accurate large scene reconstruction through an optimization problem by
taking these query-base localization pairs as cross-constraints between di↵erent par-
tial reconstructions. In addition, we apply self-constraints which can be extracted
directly from partial reconstructions. The optimization problem is solved using the
PGO tool in the python binding (PyCeres 4) of Ceres [29].
Cross-Constraints are set between di↵erent partial reconstructions based on the
relations of localization. For every localized inlier qLA

i in the query model, we
identify the image IB

mA
i

in the base model that has the most feature matches, as

shown in eq. 2.8.

mA
i = argmaxj

�
card

�
SG(fA

i , fB
j )

� 
(2.8)

where mA
i represents the index of which the image in B that has the most matches

with IAi , card represents the function of cardinality and SG represents the matching
function of SuperGlue. Then, we compute the transformation between qLA

i and
qB
mA

i
, and set the transformation as the relative cost in the pose graph. We call

these constraints as localization constraints.
Self-Constraints are set within each partial reconstruction to fully utilize the
information of visual odometry and GPS data. All images are sampled sequentially
from the videos. Thus adjacent images usually capture similar objects and therefore
have strong relationships. The transformation of two local poses are reliable, and
should be used to constrain the partial reconstruction to have reasonable local
accuracy. We call these constraints as odometry constraints. Apart from odometry
constraints, we would like to consider the information of GPS data. Since the partial
reconstructions are already aligned by the colmap model aligner, we only have to
constrain all poses to stay as close as to their original ones. We call these constraints
as GPS constraints.
After specifying all constraints, we determine the variance of these constraints in
the optimization problem. However, the variance is also designed by heuristic.
As for cross-constraints, the localization results filtered by RANSAC can be seen
as relatively reliable. Thus, in the optimization, we set the uncertainty to 1.0m
as relative cost. As for self-constraints, we notice that the GPS data sometimes
deviate far from the accurate location, which would make the model drift a lot.
Therefore, we set large uncertainty 10.0m on the GPS constraints as absolute cost.
For the odometry constraints, the relation between neighboring poses have already
been optimized during partial reconstruction. Consequently, we set the uncertainty
to only 5.0% of the distance between neighboring poses as relative cost.
In addition, we determine the loss functions in PGO. With the same consideration
above, we use the trivial loss for the odometry constraints, and use Cauchy loss for
the localization constraints and the GPS constraints.

4
https://github.com/cvg/pyceres

https://github.com/cvg/pyceres


Chapter 3

Results

In this chapter, we will show large scene reconstruction result of a whole neighbor-
hood. Total 9 trajectories with 5 camera views were recorded by GoPro 7. Firstly,
we present the results of partial reconstructions from 45 videos. Then, we show our
GPS-based retrieval and robust localization result by comparing it with the result
using the original strategy. Finally, we investigate into the heuristics in the PGO
result.

3.1 Partial Reconstruction

Table 3.1: Reconstruction results.

c1 c2 c3 c4 c5

T1 s s s s p
T2 s s s p p
T3 f s s p s
T4 s s s s p
T5 s p p s s
T6 s s s s s
T7 s p p s p
T8 s p s s s
T9 s p s s p

Table 3.1 shows an overview of all partial reconstructions, where T represents a
trajectory, ci represents camera i, s represents successful reconstruction, p represents
a trajectory is only partly reconstructed, and f represents a failed reconstruction.
Fig. 3.1 shows successful complete reconstructions of di↵erent trajectories. As
shown in fig. 3.2, all trajectories share common scenes with each other. Based on
these GPS data, we then use the model aligner in colmap to rescale all reconstruction
results, of which the 2D visualization is similar to the GPS data shown in fig. 3.2.
We also investigate into the reasons of some failed reconstructions. Table 3.1 shows
the results when the sample rate is 5 fps, and the success rate of complete recon-
struction is 69.9%. Fig. 3.3 shows the possible reasons that might cause the failed
reconstructions. These reasons could be avoided by increasing the sample rate of
videos. And this idea is proved by the lower success rate 44.4% when we at first
sampled the videos at 3 fps. Thus, increasing the sample rate can improve colmap
reconstruction by showing similar scenes more frequently. However, more images
can take more time for feature extraction and matching. Therefore, we stick to

11
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Figure 3.1: Successful reconstructions of all trajectories. 69.9% of them are recon-
structed with completeness. Di↵erent camera views may have di↵erent influence on
the reconstruction according to the environments. In general, it’s relatively easy to
reconstruct a model with more texture features captured by the camera.

Figure 3.2: GPS data of all trajectories shown in a map. All the GPS data are
decoded from the corresponding video files. Thus, there are total 45 GPS files
recording the 3D movement (latitude, longitude, elevation) of cameras. This figure
only visualizes the GPS information of camera c1.
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Figure 3.3: Possible reasons for failed reconstructions. Large turning may cause
the adjacent images do not share enough common features, and thus make SfM fail
to estimate new camera poses or augment new 3D structure. Similar pattern may
cause SfM to fail, especially in close scene. Many neighboring images have similar
features, which make it hard to output correct estimation of new camera poses.
Exposure decreases the number of accurate matches between features, therefore
make SfM fail to track the camera.

sample rate of 5 fps to achieve a relative high success rate while not increasing the
time of computation too much.

3.2 GPS-based retrieval

Table 3.2: Number of pairs retrieved.

GPS-based Original

Total N of pairs 2225678 13414100

Before performing GPS-based retrieval, we firstly build the database of GPS data for
all images after aligning all partial reconstructions. We extract all camera locations
and store them together to form a database, as shown in fig. 3.4.
With the GPS database, we can perform the GPS-based retrieval algorithm. As
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Figure 3.4: The GPS database of all images.

Figure 3.5: The ratio of pairs against the overlap ratio between trajectories. The
y-axis is Ngps

Nori
, the ratio of the number of retrieved pairs by two methods. The x-axis

is roverlap, the overlap rate of two trajectories.

shown in table 3.2, the GPS-based retrieval algorithm only generates 16.6% of
pairs that are generated by the original algorithm. For one feature matching of a
pair, SuperGlue takes about 70ms. Thus, with the GPS-based retrieval algorithm,
feature matching takes 43.3h in total, while it would take around 260.8h using the
original method. In addition, GPS information helps to avoid many false matches
and improve the accuracy in the later robust localization.

As shown in fig. 3.5, we also investigate into the relation between the ratio of the
number of retrieved pairs by two methods and the overlap rate of two trajectories,
while the overlap rate is calculated as



15 3.2. GPS-based retrieval

(a) 2D plot of localization. The base model is T1c2, while the query model is T2c3. Red
line: 2D plot of the base model. Green dots: part of the localized poses in the query
model.

(b) The RANSAC result. Red line: 2D plot of the base model. Blue line: 2D plot of the
original query model. Purple line: 2D plot of the transformed query model after RANSAC.
Green line: inliers of localized poses.

Figure 3.6: An example of robust localization result.

roverlap =
NGPS(A \B)

NGPS(A)
(3.1)

NGPS(⇤) represents a function of calculating the number of GPS grids in which a
model has images.

Ngps

Nori
= k ⇤ roverlap + b (3.2)

Ngps is the number of image pairs retrieved by GPS-based method, while Nori is
the number of image pairs retrieved by the original method. We can obviously find
that Ngps

Nori
is positively correlated to roverlap. We fit the data using eq. 3.2, while

k = 1.1315, b = 0.0248 and the p-value is 7.6894e � 296. Therefore, the less two
trajectories are overlapped, the fewer pairs are needed to be retrieved.
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(a) dth = 5.0m (b) dth = 4.0m (c) dth = 3.0m

(d) dth = 2.0m (e) dth = 1.0m

Figure 3.7: MSAC results of di↵erent thresholds. Red line: 2D plot of the base
model. Blue line: 2D plot of the original query model. Purple line: 2D plot of
the transformed query model after RANSAC. Green line: inliers of localized poses.
From the results of di↵erent thresholds, we can find that the localized poses are
similar, with the only di↵erence of the number of inliers.

3.3 Robust Localization

After feature matching for all image pairs, we use the localization tool in hloc. Fig.
3.6a shows an example of localization result that many localized poses are obviously
outliers. Thus, we cannot directly calculate the transformation of query model in
the base frame. As described in section 2.3.2, we apply a RANSAC algorithm to
output the inliers, as shown in fig. 3.6b.
In addition, we compare di↵erent settings of heuristic in MSAC to determine our
best choice. Fig. 3.7 shows MSAC results of di↵erent thresholds. The transforma-
tions of query model are very similar. The thresholds only have an impact on the
number of inliers. Considering all models would be optimized in the optimization
step, we decide to have more localized poses after RANSAC to form the cross-
constraints in PGO.

3.4 PGO

With all complete partial reconstructions and localization inliers, we can form the
PGO optimization problem. Total 31 partial models are included to obtain a large
optimized scene. There are total 206 valid combinations of models that share a
same scene and are computed to generate the inliers of localized poses.
To get the optimized poses of all these partial reconstructions, our PGO algorithm
took 1884.9s. And we visualize the PGO results as shown in fig. 3.8. From the
heatmap, we can see that the intersections of di↵erent paths are optimized the most
to align all partial reconstructions to obtain global consistency of a large scene.
Fig. 3.9 shows the histogram of distances between original poses and optimized
poses after PGO. As seen from the table 3.3, most of the camera positions are
changed within 2m, and the orientations of cameras tend to stay the same with a
maximum angular change of 1�.
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Figure 3.8: The visualization result after PGO. Solid line: trajectory of a original
model. Dashed line: trajectory of an optimized model. The heatmap visualizes the
distance change after PGO.

(a) The histogram of positional distances. (b) The histogram of angular distances.

Figure 3.9: Histograms of distances between original poses and optimized poses
after PGO.

Table 3.3: Distances between original poses and optimized poses after PGO.

mean median max

Positional Change (m) 2.09 1.13 12.96
Angular Change (�) 5.71e-3 1.12e-4 0.97

Fig. 3.10 shows the final reconstruction result of the whole neighborhood. Since
PGO only generates the optimized camera poses, we cannot directly visualize the
large scene reconstruction. To fully visualize the whole neighborhood, not only the
camera poses are needed, but the corresponding 3D structure also has to be op-
timized. It is possible to apply bundle adjustment for each partial reconstruction
when triangulating 3D points with the optimized poses, which can time-consuming.
Considering the angular change can be neglected, for simplicity, we only use the
position of cameras to apply model-aligner for each partial model. Then, we vi-
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Figure 3.10: The final reconstruction result of a large scene. All camera poses,
shown in red, and 3D structures are visualized.

sualize all partial reconstructions together to generate a global view of the whole
neighborhood.

Table 3.4: Runtime statistics.

Module time

Partial Reconstruction 155.38h
Merging Partial Reconstructions 46.72h

Pose graph optimization 0.52h

Finally, we show the runtime of each module in table 3.4.

3.5 Additional result of ETH Hönggerberg

We also test our pipeline by reconstructing the campus at ETH Hönggerberg. We
record total 30 videos of 6 trajectories from 5 camera views. Following the pipeline,
we can firstly build the partial reconstructions for each video and align them with
the GPS data. Then we try to build the GPS database in the part of merging
partial reconstructions. However, the recorded GPS data are susceptible to large
errors since some parts of the video were recorded under roofs. Thus, we use the
camera positions from aligned reconstruction models to build the GPS database
instead of using the GPS data directly. After merging partial reconstructions, we
finally run PGO to get the final large scene reconstruction of the campus.
Fig. 3.11 shows the final PGO result of ETH Hönggerberg. However, there are
obvious artifacts shown in the red boxes. These are from the same trajectory but
with di↵erent camera views, thus the positions should stay close to each other.
There are several reasons that may cause such errors. The images in red boxes are
probably from di↵erent GPS grids, thus no image pairs from them can be retrieved.
Another reason may lie in partial reconstruction that colmap computes the intrinsic
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Figure 3.11: The PGO result of ETH Hönggerberg. Solid line: trajectory of a
original model. Dashed line: trajectory of an optimized model. The heatmap
visualizes the distance change after PGO. Red box: area with obvious artifacts.

matrices of 5 cameras with relatively large di↵erences, which explains why some
reconstruction paths are longer than others.
We also test the pipeline with a large grid size of 20m to alleviate the issues in
the GPS-based retrieval. The same artifacts still remain in the final PGO result.
Therefore, more improvements should be made in the part of partial reconstruction.
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Chapter 4

Conclusions

This project mainly introduces a pipeline for a large scene reconstruction with
metric. We firstly utilize tools in hloc to reconstruct partial scenes and use the
GPS information to recover the metric, and then we build a GPS database to
accelerate the image retrieval process by ignoring invalid image pairs and localize
camera poses using RANSAC. Finally, we optimize all camera poses by PGO with
cross and self constraints.
We did qualitative analysis of our pipeline and the experiments showed that our
method can improve the original method in terms of speed and robustness. In
addition, we developed visualization tools for this project. However, our method
strongly relies on the GPS data’s accuracy, thus our method is only suitable for
outdoor scene reconstruction. Additionally, there is still lack of tools to evaluate the
reconstruction result quantitatively. In most times, we only evaluate our method
qualitatively based on the visual e↵ect on the map. It is expected to present a
systematic way of evaluation when there is no ground truth data.
For future work, we can develop applications based on large scene reconstructions.
We expect to introduce NeRF [30] to large outdoor scenes with all camera poses
generated by our pipeline. There are many challenging problems to scale NeRF
up. Our pipeline provides possibilities for NeRF in large scenes, which could be an
impressing tool for virtual city touring.
In summary, we present our pipeline for large scene metric reconstructions. By
fully utilizing the GPS information, we can improve the accuracy, robustness of
3D models and accelerate the process of reconstruction. We believe that, with this
pipeline, many applications can be developed for even city-scale 3D reconstruction.

21
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